High Performance Software Defined Radio

Overview and Current Status

Warren Pratt, NROV
John Westmoreland, AJ6BC
What is the OpenHPSDR Project... ?

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI
What is the OpenHPSDR Project...?

The OpenHPSDR Project is a modular, open source hardware and software platform for development of all components of a Software Defined Radio.

It is also a group of volunteers dedicated to the building of a pool of open-source Software Defined Radio design information.
What is an OpenHPSDR radio?

High Performance Software Defined Radio

An OpenHPSDR radio has the following features:

- Very High Performance
- Based upon an open source model (OHL/NCL hardware, GPL software)
- Generally modular and expandable
- Advances the State of the Radio Art

© 2014 John C. Westmoreland, AJ6BC
TAPR’s MISSION

Support OpenHPSDR development with:

R&D funding
 • Breadboard prototypes
 • Alpha PCBs

Early volume production
 • Put leading edge technology into many hands
TAPR’s MISSION

Result: An ever growing pool of contributors, experimenters and subsequent advancement of the radio art

OpenHPSDR and TAPR are separate entities but:

They complement each other
VK6RIO Chirp Beacon
VK6RIO Chirp Beacon

What is it?
Weak signal beacon for ionospheric probing

Test path:
VK6 (Western Australia) to ZS6 (South Africa)

Thanks to: Phil, VK6PH
Andrew VK3OE
Bob, VK4XV
VK6RIO Chirp Beacon

How does it work?

- TX at one end of path, RX at the other
- Sweep TX frequency over 2 kHz in 1 second
- Sweep RX over same frequency and interval
- Synchronize both TX and RX with GPS
VK6RIO Chirp Beacon

Theoretical Performance

A signal 36dB below the noise floor in a 2kHz bandwidth is detectable

This is 10dB better than any digital mode

If we increase the integration time from 2 to 60 seconds, we improve S/N by another 17dB
VK6RIO Chirp Beacon

On-air Test, 30 Jan 2014

At VK6PH
Transmits 2kHz / 1s chirp signal towards VK4XV on 15m

At VK4XV
Signal not visible on panadapter or waterfall
Signal not audible in receiver
Chirp decoder detects signal at 20dB over noise
No signals anywhere else on 15m band
VK6RIO Chirp Beacon

Bandscope and chirp decoder screen shot

Note that VK6PH was running 2mW at the time!

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI
VK6RIO Chirp Beacon

Other observations

- ‘Blip’ on chirp decoder indicates TX to RX distance
- Calibration depends on exact time/freq synchronization
- Callsign can be encoded using sweep direction (1 bit/s)
- Wider frequency or longer sweep yields better S/N

EME with simple antennas?
Khronos
GPS-disciplined Frequency Standard

Project leader is John, AJ6BC

© 2014 John C. Westmoreland, AJ6BC
Khronos

- Compensated Crystal Oscillator (GPSTCXO) based timing/frequency reference for HPSDR.

- The purpose of KHRONOS is to provide:
 - 1PPS GPSDO Signal
 - 10MHz GPSDO Clock
 - ‘Calibration-Free’ (under most circumstances) operation

© 2014 John C. Westmoreland, AJ6BC
Khronos - Features

- Plugs into Atlas Bus
- GSPDO Options:
 - GPSTCXO (OCXO option) from Jackson Labs
 - LC_XO (OCXO option) from Jackson Labs
 - Themis (openHPSDR Design with add’l xOCXO Options)
- 10MHz Output For Atlas Bus
- I2C Atlas Bus Interface
- USB Interfaces for GPS and MSP-430 microcontroller
- LCD Interface – std or optional touch-screen

© 2014 John C. Westmoreland, AJ6BC
Khronos - Features

- micro-SD Card for firmware upgrade storage, etc.
- Dual-Mode BlueTooth Radio (BLE 4.0 Enabled) that will allow for custom ‘app’ creation.
- USB Li-Ion (Single-cell) Charger for 14500 (AA) Li-Ion Cells
- Can be optionally powered via Power Pole connectors
- 3 On board temperature monitoring points plus addition of 2 optional NTC thermistor ‘flying probes’
- Run time options can be set via ezLCD touchscreen.
Khronos

- Status: currently in layout.
- Please see the Wiki page for the Khronos schematic:
Khronos

KHRONOS BLOCK DIAGRAM

GPS ANTENNA

BLUETOOTH

BT BLE 4.x:2.1

USB 1xF x 2

LCD (TS) 1xF

JTAG Prog. 1xF

Micro SD Card

GPS DO Plug-In Options:
- Three Options Including Temis

Microcontroller - TI MSP430F5638IPZ

10MHz

1PPS

GPS DATA PCK

DC ATLAS 1F

BATT CHGR

ATLAS 1F
Khronos

© 2014 John C. Westmoreland, AJ6BC
Themis
GPS-disciplined Frequency Standard Experimenter’s Board

Project leader is John, AJ6BC.
Themis

- Themis is an HPSDR GPS disciplined oscillator (GPSDO) design that is an *experimental* approach for disciplining Crystal Oven (OCXO) OCXO's and provides 1PPS, 10MHz, and GPS Timestamping to the Atlas Bus for the HPSDR System.

- Four OCXO's are currently supported - the MTI-Milliren 270 and 220, the Microcrystal OCXO, the ONYX IV from Wenzel, and the 3.3V ISOTEMP OCXO.
 - Most popular OCXO pin outs including standard Vref and EFC pins.

© 2014 John C. Westmoreland, AJ6BC
Themis

- An on-board DSP provides the disciplining algorithms ('modified DLL' – digitally locked loop) plus will allow experimentation with custom algorithms.
- The GPS engine is the LEA-6 from u-Blox.
- Themis plugs into Khronos as an option to the other GPSDO options.

- Status: Currently in layout.
- Please see the Wiki Page for the Themis schematic: http://openhpsdr.org/wiki/index.php?title=GPSTCXO

© 2014 John C. Westmoreland, AJ6BC
Themis

THEMIS BLOCK DIAGRAM

© 2014 John C. Westmoreland, AJ6BC
Themis

© 2014 John C. Westmoreland, AJ6BC
Gen2 Hardware
Gen2 Hardware

Gen2 Hardware Goals

- Extend useful life of Gen1 boards (Mercury, Pennylane)
- Increase performance of existing Gen1 boards
- Create new Gen2 high-performance boards
- Allow mixing of Gen1 and Gen2 boards in a system
Gen2 Hardware

Gen2 Architecture Changes

- Eliminate Atlas bottleneck: change bus → star topology
- Keep Atlas DIN connector, buffer signals at each
- Add high-speed Expansion Connector (EC) for Gen2
- Use LVDS, CML, 8B/10B encoding on EC for speed
- Add common hardware to baseboard
Gen2 Hardware

Proposed Gen2 Board Outline

- Gen2 Extension
- ORIGINAL Gen1 Board Outline
- High-Speed EC
- 96-PIN DIN GEN1 Connector

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI
Gen2 Hardware

Gen1 Architecture Diagram
Gen2 Hardware

Gen2 Architecture Diagram

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI
Gen2 Hardware

- **Medusa** Receiver: four 16b@122.88Msps ADCs
- **OctoMerc** Receiver: eight 16b@122.88Msps ADCs
- **The Flash** High-speed RX: two 12b@2.5Gsp ADCs
- **Strawberry Fields** TX: four 16b@1.0Gsp DACs
Direct CW
Direct CW

Problem: PowerSDR™ latency is too long to permit full-break-in CW operation at reasonable sending speeds

Solution: Implement the CW transmitter within the FPGA, eliminating the software and communications delays
Direct CW

How we do it now

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI
Direct CW

Improved method

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI
Metis Gigabit Ethernet
Metis Gigabit Ethernet

- Metis/Hermes hardware supports 10/100/1000 Mb/s
- Current FPGA code runs interface at only 100 Mb/s

VE3NEA and VK6PH are re-organizing the FPGA code and are adding support for 1000 Mb/s (Gigabit Ethernet)
Cyclops 6GHz SA

© 2014 John C. Westmoreland, AJ6BC
New & Improved Cyclops

6 GHz Spectrum Analyzer

- New MAX2870 device evaluated, range 27 MHz to 6 GHz
- Use down conversion with low-IF (40-50MHz)
- Tested and proved multiple LO + IF technique to cancel images
- Proto using Metis/Mercury, MAX2870 EVB and KISS Konsole
- Required multiple RX “stitching” implemented in PowerSDR
- Next stage is PCB layout for Alpha version

Status:

Project leaders: Phil, VK6PH and Berndt, VK5ABN
Ready to begin PCB layout
New & Improved Cyclops

MAX2870 Evaluation Board

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI
Hermes VNA
Vector Network Analyzer

Hermes-based VNA

- Support built in to Hermes FPGA code
- Two software versions available: VK6PH and VE3NEA
- Both PC software versions released under GPL
- FPGA code improvements by VE3NEA have reduced scan times
- Reflection or Transmission VNA
- Requires external bridge for reflection measurements
- 100kHz to 60MHz in 1kHz steps
- Working on port to Apache Labs Angelia/Anan boards

Status:

Project leaders: Phil, VK6PH and Alex, VE3NEA

FPGA code for Angelia/Anan in progress
Hermes VNA

VK6PH VNA Software

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI
Hermes VNA

VK6PH VNA Software

© 2014 John C. Westmoreland, AJ6BC Credit: Scotty WA2DFI
Some OpenHPSDR Rig Pictures

© 2014 John C. Westmoreland, AJ6BC

Credit: TAPR
Some OpenHPSDR Rig Pictures

© 2014 John C. Westmoreland, AJ6BC

Credit: TAPR
Some OpenHPSDR Rig Pictures

© 2014 John C. Westmoreland, AJ6BC

Credit: Georg DL2KP
Some OpenHPSDR Rig Pictures

© 2014 John C. Westmoreland, AJ6BC
Credit: Georg DL2KP
Some OpenHPSDR Rig Pictures

© 2014 John C. Westmoreland, AJ6BC

Credit: Georg DL2KP
Some OpenHPSDR Rig Pictures

© 2014 John C. Westmoreland, AJ6BC

Credit: Georg DL2KP
Thank you!

openHPSDR Project information at:
www.openhpsdr.org

openHPSDR Article in May/June 2014 QEX:
The High Performance Software Defined Radio Project,
Scotty Cowling, WA2DFI plus other SDR articles this yr.

Boards available at:
www.tapr.org
References

Questions?