

High Performance Software Defined Radio

Overview and Current Status

Warren Pratt, NROV John Westmoreland, AJ6BC Pacificon 2014

What is the OpenHPSDR Project...?

What is the OpenHPSDR Project...?

The OpenHPSDR Project is a modular, open source hardware and software platform for development of all components of a Software Defined Radio.

It is also a group of volunteers dedicated to the building of a pool of open-source Software Defined Radio design information.

What is an OpenHPSDR radio?

High Performance Software Defined Radio

An OpenHPSDR radio has the following features:

- Very High Performance
- Based upon an open source model (OHL/NCL hardware, GPL software)
- Generally modular and expandable
- Advances the State of the Radio Art

TAPR's MISSION

Support OpenHPSDR development with:

R&D funding

- Breadboard prototypes
- Alpha PCBs

Early volume production

Put leading edge technology into many hands

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI

TAPR's MISSION

Result: An ever growing pool of contributors, experimenters and subsequent advancement of the radio art

OpenHPSDR and TAPR are <u>separate</u> entities but:

They *complement* each other

VK6RIO Chirp Beacon

Credit: Scotty WA2DFI

VK6RIO Chirp Beacon

What is it?
Weak signal beacon for ionospheric probing

Test path: VK6 (Western Australia) to ZS6 (South Africa)

Thanks to: Phil, VK6PH Andrew VK3OE Bob, VK4XV

Credit: Scotty WA2DFI

VK6RIO Chirp Beacon

How does it work?

- TX at one end of path, RX at the other
- Sweep TX frequency over 2 kHz in 1 second
- Sweep RX over same frequency and interval
- Synchronize both TX and RX with GPS

VK6RIO Chirp Beacon

Theoretical Performance

A signal 36dB below the noise floor in a 2kHz bandwidth is detectable

This is 10dB better than any digital mode

If we increase the integration time from 2 to 60 seconds, we improve S/N by another 17dB

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI

VK6RIO Chirp Beacon

On-air Test, 30 Jan 2014

At VK6PH

Transmits 2kHz / 1s chirp signal towards VK4XV on 15m

At VK4XV

Signal not visible on panadapter or waterfall
Signal not audible in receiver
Chirp decoder detects signal at 20dB over noise
No signals anywhere else on 15m band

openHPSDR 0 2398 AESC 2011 NOS TM

VK6RIO Chirp Beacon

Bandscope and chirp decoder screen shot Note that VK6PH was running **2mW** at the time!

openHPSDR 1396/45K, 2011 KWS TM

Credit: Scotty WA2DFI

VK6RIO Chirp Beacon

Other observations

- 'Blip' on chirp decoder indicates TX to RX distance
- Calibration depends on exact time/freq synchronization
- Callsign can be encoded using sweep direction (1 bit/s)
- Wider frequency or longer sweep yields better S/N

EME with simple antennas?

Khronos

GPS-disciplined Frequency Standard

Project leader is John, AJ6BC

Khronos

- Compensated Crystal Oscillator (GPSTCXO) based timing/frequency reference for HPSDR.
- The purpose of KHRONOS is to provide:
 - 1PPS GPSDO Signal
 - 10MHz GPSDO Clock
 - 'Calibration-Free' (under most circumstances) operation

Khronos - Features

- Plugs into Atlas Bus
- GSPDO Options:
 - GPSTCXO (OCXO option) from Jackson Labs
 - LC_XO (OCXO option) from Jackson Labs
 - Themis (openHPSDR Design with add'l xOCXO Options)
- 10MHz Output For Atlas Bus
- I2C Atlas Bus Interface
- USB Interfaces for GPS and MSP-430 microcontroller
- LCD Interface std or optional touch-screen

Khronos - Features

- micro-SD Card for firmware upgrade storage, etc.
- Dual-Mode BlueTooth Radio (BLE 4.0 Enabled) that will allow for custom 'app' creation.
- USB Li-Ion (Single-cell) Charger for 14500 (AA) Li-Ion Cells
- Can be optionally powered via Power Pole connectors
- 3 On board temperature monitoring points plus addition of 2 optional NTC thermistor 'flying probes'
- Run time options can be set via ezLCD touchscreen.

Khronos

- Status: currently in layout.
- Please see the Wiki page for the Khronos schematic: http://openhpsdr.org/wiki/index.php?title=GPSTCXO

Khronos

© 2014 John C. Westmoreland, AJ6BC

openHPSDR 1398 AESK, 2021 KNSS TM

Khronos

© 2014 John C. Westmoreland, AJ6BC

GPS-disciplined Frequency Standard Experimenter's Board

Project leader is John, AJ6BC.

- Themis is an HPSDR GPS disciplined oscillator (GPSDO) design that is an **experimental** approach for disciplining Crystal Oven (OCXO) OCXO's and provides 1PPS, 10MHz, and GPS Timestamping to the Atlas Bus for the HPSDR System.
- Four OCXO's are currently supported the MTI-Milliren 270 and 220, the Microcrystal OCXO, the ONYX IV from Wenzel, and the 3.3V ISOTEMP OCXO.
 - Most popular OCXO pin outs including standard Vref and EFC pins.

- An on-board DSP provides the disciplining algorithms ('modified DLL' digitally locked loop) plus will allow experimentation with custom algorithms.
- The GPS engine is the LEA-6 from u-Blox.
- Themis plugs into Khronos as an option to the other GPSDO options.
- Status: Currently in layout.
- Please see the Wiki Page for the Themis schematic: http://openhpsdr.org/wiki/index.php?title=GPSTCXO

THEMIS BLOCK DIAGRAM

© 2014 John C. Westmoreland, AJ6BC

© 2014 John C. Westmoreland, AJ6BC

Gen2 Hardware

Credit: Scotty WA2DFI

Gen2 Hardware

Gen2 Hardware Goals

- Extend useful life of Gen1 boards (Mercury, Pennylane)
- Increase performance of existing Gen1 boards
- Create new Gen2 high-performance boards
- Allow mixing of Gen1 and Gen2 boards in a system

Gen2 Hardware

Gen2 Architecture Changes

- Eliminate Atlas bottleneck: change bus → star topology
- Keep Atlas DIN connector, buffer signals at each
- Add high-speed Expansion Connector (EC) for Gen2
- Use LVDS, CML, 8B/10B encoding on EC for speed
- Add common hardware to baseboard

Gen2 Hardware

Proposed Gen2 Board Outline

Credit: Scotty WA2DFI

Gen2 Hardware

Gen1 Architecture Diagram

Credit: Scotty WA2DFI

Gen2 Hardware

Gen2 Hardware

- Medusa Receiver: four 16b@122.88Msps ADCs
- OctoMerc Receiver: eight 16b@122.88Msps ADCs
- The Flash High-speed RX: two 12b@2.5Gsps ADCs
- Strawberry Fields TX: four 16b@1.0Gsps DACs

<u>Problem</u>: PowerSDRTM latency is too long to permit fullbreak-in CW operation at reasonable sending speeds

Solution: Implement the CW transmitter within the FPGA, eliminating the software and communications delays

How we do it now

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI

Improved method

© 2014 John C. Westmoreland, AJ6BC

Credit: Scotty WA2DFI

Metis Gigabit Ethernet

Metis Gigabit Ethernet

- Metis/Hermes hardware supports 10/100/1000 Mb/s
- Current FPGA code runs interface at only 100 Mb/s

VE3NEA and VK6PH are re-organizing the FPGA code and are adding support for 1000 Mb/s (Gigabit Ethernet)

Cyclops 6GHz SA

ps

New & Improved Cyclops

6 GHz Spectrum Analyzer

- □ New MAX2870 device evaluated, range 27 MHz to 6 GHz
- □ Use down conversion with low-IF (40-50MHz)
- □ Tested and proved multiple LO + IF technique to cancel images
- □ Proto using Metis/Mercury, MAX2870 EVB and KISS Konsole
- □ Required multiple RX "stitching" implemented in PowerSDR
- □ Next stage is PCB layout for Alpha version

Status:

Project leaders: Phil, VK6PH and Berndt, VK5ABN Ready to begin PCB layout

New & Improved Cyclops

MAX2870 Evaluation Board

Hermes VNA

Vector Network Analyzer

Hermes-based VNA

- ■Support built in to Hermes FPGA code
- □Two software versions available: VK6PH and VE3NEA
- □Both PC software versions released under GPL
- □FPGA code improvements by VE3NEA have reduced scan times
- □Reflection or Transmission VNA
- Requires external bridge for reflection measurements
- □100kHz to 60MHz in 1kHz steps
- ■Working on port to Apache Labs Angelia/Anan boards

<u>Status:</u>

Project leaders: Phil, VK6PH and Alex, VE3NEA FPGA code for Angelia/Anan in progress

Credit: Scotty WA2DFI

Hermes VNA

VK6PH VNA Software

Credit: Scotty WA2DFI

Hermes VNA

VK6PH VNA Software

openHPSDR 0 2304 AESK, 2011 KNSS TM

openHPSDR 0 2396 AESK, 2011 KNSS TM

openHPSDR 0 3900 AESK, 2011 NOS

Credit: Georg DL₂KP

openHPSDR 0 2396 AESK, 2011 KNSS TM

openHPSDR 0 2396 AESK, 2011 KNSS TM

Thank you!

openHPSDR Project information at:

www.openhpsdr.org

openHPSDR Article in May/June 2014 QEX:

The High Performance Software Defined Radio Project, Scotty Cowling, WA2DFI plus other SDR articles this yr.

Boards available at:

www.tapr.org

References

- D.W. Allan, L. Fey, H.E. Machlan, J.A. Barnes, "An Ultra-Precise Time Synchronization System Designed By Computer Simulation", Frequency, Radio Standards Laboratory, National Bureau of Standards, Boulder, Colorado, Jan. 1968.
- 2. Bill Bourke and Bruce Penrod, "An Analysis of a Microprocessor Controlled Disciplined Frequency Standard", **Austron, Inc.**, 37th Annual Symposium On Frequency Control, IEEE, June 1983.

Questions?